Assimilation séquentielle de données en géosciences

Thomas Romary
Centre de Géosciences, Equipe Géostatistique

June 13, 2019

PSLネ

Qu'est-ce que l'assimilation de données ?

Tentative de définition

L'assimilation de données est la technique selon laquelle des observations et la sortie d'un modèle numérique sont combinées pour produire une estimation optimale de l'état d'un système évolutif

Exemple : température de surface de la mer

Information : modèle

SST: Satellite (AVHRR)

Information: données

On combine les deux types d'information par assimilation de données
\Longrightarrow meilleures données d'analyse (rétrospectives), prédictions pour la température, la couverture de glace, etc.

Exemple: Chlorophylle dans l'océan

Free-run model - Chlorophyll June 14, 2001

Information: données

Information : modèle
On combine les deux types d'information par assimilation de données
\Longrightarrow meilleures données d'analyse (rétrospectives), prédictions extrait de "An overview of DA", L. Nerger

Exemples d'application

Historiquement : météorologie, puis océanographie
Aujourd'hui, de plus en plus de domaines d'application

- glaciologie
- sismologie
- fusion nucléaire
- épidémiologie
- agronomie
- qualité de l'air
- etc.

Pour quoi faire?

Historiquement : estimation d'un état initial, pour la prédiction de la météo

Aujourd'hui, beaucoup d'autres types d'applications

- conditions initiales pour la prédiction
- calibration et validation de modèles
- conception, validation et surveillance de systèmes d'observation
- réanalyse
- meilleure compréhension des systèmes (erreurs de modélisation, d'observation, interaction de processus physiques, paramètres, etc.)
- etc.

Formalisation

On cherche à caractériser l'état $\left(x_{1}, \ldots, x_{T}\right)$ du système au cours du temps discrétisé entre 1 et T, à partir des observations $\left(y_{1}, \ldots, y_{T}\right)$

Deux ingrédients
a un modèle d'évolution F
(2) un opérateur d'observation H
où x_{0} est connu (conditions initiales), ε^{F} et ε^{H} sont les erreurs de
modélisation et d'observation
NB x_{t} ne dépend que de x_{t-1} (Markov)

Formalisation

On cherche à caractériser l'état $\left(x_{1}, \ldots, x_{T}\right)$ du système au cours du temps discrétisé entre 1 et T, à partir des observations $\left(y_{1}, \ldots, y_{T}\right)$

Deux ingrédients

(1) un modèle d'évolution F

$$
x_{t}=F\left(x_{t-1}\right)+\varepsilon_{t}^{F}
$$

(2) un opérateur d'observation H

$$
y_{t}=H\left(x_{t}\right)+\varepsilon_{t}^{H}
$$

où x_{0} est connu (conditions initiales), ε^{F} et ε^{H} sont les erreurs de modélisation et d'observation

NB x_{t} ne dépend que de x_{t-1} (Markov)

Analyse Bayésienne

Formule de Bayes

Soit x l'état du système et y une observation, on a

$$
\begin{aligned}
\mathbb{P}(x \mid y) & =\frac{\mathbb{P}(y \mid x) \mathbb{P}(x)}{\mathbb{P}(y)} \\
& \propto \mathbb{P}(y \mid x) \mathbb{P}(x)
\end{aligned}
$$

Analyse Bayésienne

Notons $x_{1: T}=\left(x_{1}, \ldots, x_{T}\right)$ la trajectoire de l'état du système et $y_{1: T}=\left(y_{1}, \ldots, y_{T}\right)$ celle des observations
$\mathbb{P}\left(x_{1: t} \mid y_{1: t}\right)$

Analyse Bayésienne

Notons $x_{1: T}=\left(x_{1}, \ldots, x_{T}\right)$ la trajectoire de l'état du système et $y_{1: T}=\left(y_{1}, \ldots, y_{T}\right)$ celle des observations
On a $\forall t \leq T$

$$
\mathbb{P}\left(x_{1: t} \mid y_{1: t}\right)
$$

Analyse Bayésienne

Notons $x_{1: T}=\left(x_{1}, \ldots, x_{T}\right)$ la trajectoire de l'état du système et $y_{1: T}=\left(y_{1}, \ldots, y_{T}\right)$ celle des observations
On a $\forall t \leq T$

$$
\mathbb{P}\left(x_{1: t} \mid y_{1: t}\right) \propto \mathbb{P}\left(y_{t} \mid x_{1: t}, y_{1: t-1}\right) \mathbb{P}\left(x_{1: t} \mid y_{1: t-1}\right)
$$

Analyse Bayésienne

Notons $x_{1: T}=\left(x_{1}, \ldots, x_{T}\right)$ la trajectoire de l'état du système et $y_{1: T}=\left(y_{1}, \ldots, y_{T}\right)$ celle des observations
On a $\forall t \leq T$

$$
\begin{aligned}
\mathbb{P}\left(x_{1: t} \mid y_{1: t}\right) & \propto \mathbb{P}\left(y_{t} \mid x_{1: t}, y_{1: t-1}\right) \mathbb{P}\left(x_{1: t} \mid y_{1: t-1}\right) \\
& \propto \mathbb{P}\left(y_{t} \mid x_{t}\right) \mathbb{P}\left(x_{t} \mid x_{1: t-1}, y_{1: t-1}\right) \mathbb{P}\left(x_{1: t-1} \mid y_{1: t-1}\right)
\end{aligned}
$$

Analyse Bayésienne

Notons $x_{1: T}=\left(x_{1}, \ldots, x_{T}\right)$ la trajectoire de l'état du système et $y_{1: T}=\left(y_{1}, \ldots, y_{T}\right)$ celle des observations
On a $\forall t \leq T$

$$
\begin{aligned}
\mathbb{P}\left(x_{1: t} \mid y_{1: t}\right) & \propto \mathbb{P}\left(y_{t} \mid x_{1: t}, y_{1: t-1}\right) \mathbb{P}\left(x_{1: t} \mid y_{1: t-1}\right) \\
& \propto \mathbb{P}\left(y_{t} \mid x_{t}\right) \mathbb{P}\left(x_{t} \mid x_{1: t-1}, y_{1: t-1}\right) \mathbb{P}\left(x_{1: t-1} \mid y_{1: t-1}\right) \\
& \propto \mathbb{P}\left(y_{t} \mid x_{t}\right) \mathbb{P}\left(x_{t} \mid x_{t-1}\right) \mathbb{P}\left(x_{1: t-1} \mid y_{1: t-1}\right)
\end{aligned}
$$

On caractérise ainsi séquentiellement la loi de x_{t} sachant les observations passées pour plus de détails, voir Wikle and Berliner [2007]

Analyse Bayésienne

Notons $x_{1: T}=\left(x_{1}, \ldots, x_{T}\right)$ la trajectoire de l'état du système et $y_{1: T}=\left(y_{1}, \ldots, y_{T}\right)$ celle des observations
On a $\forall t \leq T$

$$
\begin{aligned}
\mathbb{P}\left(x_{1: t} \mid y_{1: t}\right) & \propto \mathbb{P}\left(y_{t} \mid x_{1: t}, y_{1: t-1}\right) \mathbb{P}\left(x_{1: t} \mid y_{1: t-1}\right) \\
& \propto \mathbb{P}\left(y_{t} \mid x_{t}\right) \mathbb{P}\left(x_{t} \mid x_{1: t-1}, y_{1: t-1}\right) \mathbb{P}\left(x_{1: t-1} \mid y_{1: t-1}\right) \\
& \propto \mathbb{P}\left(y_{t} \mid x_{t}\right) \mathbb{P}\left(x_{t} \mid x_{t-1}\right) \mathbb{P}\left(x_{1: t-1} \mid y_{1: t-1}\right)
\end{aligned}
$$

On caractérise ainsi séquentiellement la loi de x_{t} sachant les observations passées pour plus de détails, voir Wikle and Berliner [2007]

Analyse Bayésienne

Quels problèmes peut-on résoudre ?
(C) filtrage, $\Longrightarrow \mathbb{P}\left(x_{t} \mid y_{1: t}\right)$

Cㄹ prédiction,

Analyse Bayésienne

Quels problèmes peut-on résoudre ?
(1) filtrage, $\Longrightarrow \mathbb{P}\left(x_{t} \mid y_{1: t}\right)$
(3) prédiction, $\Longrightarrow \mathbb{P}\left(x_{T+n} \mid y_{1: T}\right)$
© lissage,

Analyse Bayésienne

Quels problèmes peut-on résoudre ?
(1) filtrage, $\Longrightarrow \mathbb{P}\left(x_{t} \mid y_{1: t}\right)$
(2) prédiction, $\Longrightarrow \mathbb{P}\left(x_{T+n} \mid y_{1: T}\right)$
(3) lissage, $\Longrightarrow \mathbb{P}\left(x_{t} \mid y_{1: T}\right)$

Analyse Bayésienne

Quels problèmes peut-on résoudre ?
(1) filtrage, $\Longrightarrow \mathbb{P}\left(x_{t} \mid y_{1: t}\right)$
(2) prédiction, $\Longrightarrow \mathbb{P}\left(x_{T+n} \mid y_{1: T}\right)$
(3) lissage, $\Longrightarrow \mathbb{P}\left(x_{t} \mid y_{1: T}\right)$

Résolution

Séquentiellement et généralement en deux étapes
(1) Propagation (forecast): on laisse évoluer le système selon F sans tenir compte des observations
(2) Correction (analysis): on corrige l'état propagé en fonction des observations

Cas particulier

Si F et H sont linéaires et les erreurs gaussiennes, alors on peut calculer explicitement toutes les distributions conditionnelles

C'est le filtre de Kalman

Filtrage particulaire
Principe

Un aperçu du zoo des méthodes d'assimilation de données

- Variationnelles
- 3D-var
- 4D-var
- ...
- Stochastiques
- KF-S
- EKF-S
- EnKF-S
- PF-S (SMC)
- ...
- méthodes hybrides

Exemples d'application

Historiquement : météorologie, puis océanographie
Aujourd'hui, de plus en plus de domaines d'application

- glaciologie
- sismologie
- fusion nucléaire
- épidémiologie
- agronomie
- qualité de l'air
- etc.
- qualité de l'eau

En qualité de l'eau

Modèle Prose

Figure A. 1 - Structure du modèle ProSe. $u(x, y, t), h(x, y, t), P_{i}(x, y, t)$ et $D_{i}(x, y, t)$ correspondent à la vitesse d'écoulement, à la hauteur d'eau et flux d'espèces particulaires et dissoutes au point (x, y) à l'instant $t . Q(x, t)$ est le débit à la section d'abscisse x et au temps t.

Module biogéochimique C-RIVE

extrait de Wang et al. [2018]

Quelques résultats

Quelques résultats

extrait de Wang et al. [2019]

Quelques résultats

extrait de Wang et al. [2019]

Quelques résultats

References

Shuaitao Wang, Nicolas Flipo, and Thomas Romary. Time-dependent global sensitivity analysis of the c-rive biogeochemical model in contrasted hydrological and trophic contexts. Water research, 144:341-355, 2018.
Shuaitao Wang, Nicolas Flipo, and Thomas Romary. Oxygen data assimilation for metabolism's parameter estimation in urban river systems. submitted to Water research, 2019.
Christopher K Wikle and L Mark Berliner. A bayesian tutorial for data assimilation. Physica D: Nonlinear Phenomena, 230(1-2):1-16, 2007.

