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In Situ Recovery

 Fluid flow
 Transport
 Chemical reaction
 Complex medium

• Heterogeneous 
properties

Reactive  transport  simulation

[US NRC, 2013-2014]

ISR well field  -  Upper 
view  [From M.Vergnaud]

Injection well

Production well
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Roll front deposit characteristics

General specificities

-Low ore grades

-Highly permeable deposit

-Confined between two non permeable layer

[Cauldron Energy website]

Particular specificities

-Very heterogeneous

-deep
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Roll front deposit variability
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Example of map and cross sections of roll-front deposits

 Significant diversity of 
mineralized uranium geometry

 Elongated and more or less 
continue

 Lenticular or roll shapes

 Uranium mineralization depends on 
variable factors:

 Geological, Geochemical, 
hydrogeological

• How can we model the geological uncertainty?
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[Petit et al, 2012]

Geological uncertainties modeling

N realizations of three 
properties

One production block realization

-3D regular grid

-Hundreds of thousand cells
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Well data 
analysis 
Well data 
analysis 

Conditioned 
geostatistical 
realizations 



Reactive transport simulation with HYTEC

-Operational parameters
-Geological properties (3D grid properties)
-Geochemical properties

-Reactive transport simulation 
with HYTEC

Block exploitation behavior

Input
t

t+Δt
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How can we predict the uranium recovery uncertainty?

Output



Realization 1 Realization NRealization 3Realization 2

Classical Uncertainty Quantification

-  -  - 

Reactive Transport Simulation (x N)

Statistical quantities to quantify uncertainty (median, quantiles, …)

-  -  - 
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Uranium 
recovery 
curves



Realization 1 Realization NRealization 3Realization 2

Classical Uncertainty Quantification

-  -  - 

Statistical quantities to quantify uncertainty (median, quantiles, …)

-  -  - 
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Uranium 
recovery 
curves

Unmanageable computational time



Realization 1 Realization NRealization 3Realization 2

Uncertainty Quantification with scenario reduction

-  -  - 

Scenario reduction

k selected realizations 
with weight : k << N

Variability of k realization 
≈ variability of N set

ith realization jth realization
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Reactive Transport Simulation (x k)

Statistical quantities to quantify uncertainty (median, P10, P90)

Realization i Realization j

Uncertainty Quantification with scenario reduction
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Uranium 
recovery 
curves



Scenario Reduction Method

• Step 1

• Step 2

• Step 3

Description of each realization 
using few quantities 

Compute dissimilarities 
between realizations

Clustering of the realizations set 
and representative realizations 

selection
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1th step of scenario reduction

o Summarizing geological 
properties 

 Mineralization uranium  volume

 Uranium grade proportion

 Uranium mass

  …
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  In each realization



1th step of scenario reduction

o Summarizing geological 
properties 

 Mineralization uranium  volume

 Uranium grade proportion

 Uranium mass

  …
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o Performing TRACER transport 
simulations

  In each realization

Fast simulations (without chemistry)

Tracer of uranium in place 
Tracer production simulation try to 
approximate the uranium production



1th step of scenario reduction

o Summarizing geological 
properties 

 Mineralization uranium  volume

 Uranium grade proportion

 Uranium mass

  …
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o Performing TRACER transport 
simulations

  In each realization

Fast simulations (without chemistry)

Tracer of uranium in place 
Tracer production simulation try to 
approximate the uranium production

 Flow-based proxy result

 Geological properties 
descriptors 

Realization description :
Quickly computed
Vector of  realization features



2nd step of scenario reduction
 Realization dissimilarity distance computing 

Realization i Realization j

δij

• Ideal 
dissimilarity 
(output 
dissimilarity)

• Practical 
dissimilarity 
(input 
dissimilarity)

Feature 
vector Xi of 

the 
realization i

Feature 
vector Xj of 

the 
realization j

Dij

A dimensional reduction can be applied (complexity reduction, 
visualization, ...)
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3rd step of scenario reduction
 K-medoïd algorithm

• Realization segregation into cluster 

• Representative scenario selection 
in each cluster

• Scenario weight  Realization 
proportion in the cluster

Eight clusters of  realizations  and 
representative realizations (projected in 
the two first principal component plan)
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Uranium recovery of the 
eight selected realizations



Validation of scenario reduction for uncertainty quantification 

Uncertainty quantifications : 
P10, P50 and P90 curves
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UQ in eight selected and 
weighted realizations UQ in a large set of realizations
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Validation of scenario reduction for uncertainty quantification 

Comparison of uncertainty quantification

 Uncertainty quantification by simulating the ISR exploitation in the few 
selected and weighted realizations



Conclusion

 Complexity of the ISR exploitation  Reactive transport modeling
 Heterogeneity of roll front deposits properties Geostatistics modeling 

 Selection of few realizations using scenario reduction method
• Defining each geological realization in the space of descriptors 
• Distance between realization and dimensionality reduction
• Clustering (representative realizations selection and weighting)

 Management of property heterogeneity to quantify their impact on 
uranium recovery
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Perspectives

 Creation of more descriptive tracers of the uranium production

 Use meta-modeling of reactive transport simulation to gain 
computational time
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Meta-modeling in Hytec
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Meta-modeling in Hytec
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CHESS solver



Meta-modeling in Hytec
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80-90 % of 
computational time



Meta-modeling in Hytec
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80-90 % of 
computational time

 Objectives:  

 Meta-model results have to be validated at the cell scale AND at 
the full simulation scale

 The gain in computational time has to be significant



Meta-modeling in Hytec
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80-90 % of 
computational time



Meta-modeling in Hytec

26
Scenario reduction for uncertainty quantification –  J. Langanay

Mass Flux (in – out)
Mineral in the cell
...

Meta-model

Regression
Random forest

SVM
PCE

...

Chemical element 
concentrations 
modifications

 Test of different machine learning algorithms to find the most efficient one

 

 Training set : (cell number x time step number x convergence iteration 
number) CHESS results 

 



Meta-modeling in Geosciences
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 Several examples of Machine learning in geosciences
• Construction of 3D porous media (pore scale) [L. Mosser, 2017]
• Synthesis of 3D geological reservoir [A. Elsheikh, 2017]
• Partnership between Total and Google to perform seismic data 

interpretation
• ….

 Machine learning in the Geoscience Center, an interesting niche or 
a more popular future?
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Thank you for your attention !
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